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Image cropping

• Extraction of rectangular sub-regions from a given image

• To preserve (most of) the visual content

• And enhance the visual quality of the cropped image

• It requires to solve the problem of “visual interestingness”

• Several applications:

• Helping professional editors in advertisement and publishing

• Increase presentation quality in search engines and social networks

• Representations of image collections with a single image

• Naturally useful for multimedia digital libraries

Our contribution

• A saliency-based solution for image cropping, applicable to the
digital humanities domain
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• Saliency Attentive Model (SAM)
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What is Saliency?

• The saliency of an item (an object, a person, a 
pixel, etc.) is the state or quality by which it 
stands out relative to its neighbours.

• Classical algorithms for saliency prediction 
focused on identifying the fixation points that 
human viewer would focus on at first glance.
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Saliency Prediction

CONVENTIONAL SALIENCY

▪ Extraction of hand-crafted and multi-scale features:

▪ Lower-level features

• color, texture, contrast, etc.

▪ Higher-level concepts

• faces, people, text, horizon, etc.

▪ Difficult to combine all these factors.

DEEP SALIENCY

▪ Considerable progress, thanks to recent advances in
deep learning.

▪ Fully Convolutional networks directly predict saliency
maps given by a non-linear combination of high level
feature maps extracted from the last convolutional
layer.
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Saliency Attentive Model (SAM)

M. Cornia, L. Baraldi, G. Serra, R. Cucchiara. "Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model" arXiv preprint
arXiv:1611.09571, 2017.
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Results on SALICON dataset

[1] Cornia et al. “A Deep Multi-Level Network for Saliency Prediction." ICPR, 2016.
[2] Kruthiventi et al. “Saliency Unified: A deep architecture for eye fixation prediction and salient object segmentation.” CVPR, 2016.
[3] Pan et al. “Shallow and Deep Convolutional Networks for Saliency Prediction.” CVPR, 2016.
[4] Kümmerer et al. “DeepGaze II: Reading fixations from deep features trained on object recognition.“arXiv:1610.01563, 2016.
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Results on MIT Saliency Benchmark
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[3] Pan et al. “SalGAN: Visual Saliency Prediction with Generative Adversarial Networks.“, arXiv:1701.01081 2017.
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[5] Kümmerer et al. “DeepGaze II: Reading fixations from deep features trained on object recognition.“ arXiv:1610.01563, 2016.
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[7] Huang et al. “SALICON: Reducing the semantic gap in saliency prediction by adapting deep neural networks.“ ICCV, 2015.
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Qualitative results
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Qualitative results
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Qualitative results (Hollywood2 dataset)
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Saliency for automatic image cropping

• Being saliency a proxy of visual interestingness, we apply it to automatic image cropping

• The problem can be casted as that of finding a rectangular region R with maximum saliency.

• Which boils down to finding the minimum bounding box of all salient pixels above a threshold

Datasets

• Flickr-Cropping dataset

• 1,743 images, associated with crowd-sourced annotations

• 1,395 for training, 348 for test

• CUHK Image Cropping dataset

• 950 images cropped by experienced photographers

• 3 annotations for each image

Metrics

• Intersection-over-union (area)

• Boundary Displacement Error (distance between sides)



Results on Flickr-Cropping dataset

[1] Chen et al. “Quantitative analysis of automatic image cropping algorithms: A dataset and comparative study.” WACV, 2017.
[2] Chen et al. “Learning to compose with professional photographs on the web.” arXiv preprint arXiv:1702.00503, 2017.
[3] Li et al. “A2-RL: Aesthetics Aware Reinforcement Learning for Automatic Image Cropping.” arXiv preprint arXiv:1709.04595, 2017.

Two baselines:

• Saliency density: maximizes the difference of averaged saliency between the selected BB and the outer region

• VGG activations: saliency maps are replaced with activations from the last convolutional layer of the VGG-16



Results on CUHK dataset

[1] Yan et al. “Learning the change for automatic image cropping.” CVPR, 2013.
[2] Chen et al. “Learning to compose with professional photographs on the web.” arXiv preprint arXiv:1702.00503, 2017.
[3] Li et al. “A2-RL: Aesthetics Aware Reinforcement Learning for Automatic Image Cropping.” arXiv preprint arXiv:1709.04595, 2017.



Qualitative Results
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Application to Historical Manuscripts

• We apply our image cropping approach to select the best pages to represent historical manuscripts.

• Application: improvement of the navigation of historical digital libraries: users can visually identify the content of a 
book watching its most representative images, without the need of opening it.

• Visually representative pages:

• Those with a big contrast between salient and non salient regions

• i.e., those that contain valuable details

Dataset

• A set of digitized manuscripts from the Estense Library Collection (Modena)
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Thank you!
Any question?

lorenzo.baraldi@unimore.it
http://aimagelab.ing.unimore.it
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