An Abstract Argumentation-based Approach to Automatic Extractive Text Summarization

Stefano Ferilli, Andrea Pazienza Dipartimento di Informatica - Università di Bari, Bari, Italy

stefano.ferilli@uniba.it

Overview

- Introduction & Motivation
- Proposed solution
 - Abstract Argumentation
- Evaluation
- Conclusions & Future Work

Introduction

- Text summarization
 - The process of automatically creating a shorter version of one or more text documents
- 2 approaches
 - Extractive: work by selecting sentences from the input document(s) according to some criterion
 - Abstractive: may produce summaries containing sentences that were not present in the input document(s)

Motivation

- Information overload problem
 - Legacy and New documents
 - Internet 2.0
 - News
- Reading/Analyzing/Understanding the available documents impossible for humans
 - Huge quantity
 - Fast rate

Objectives

- Generality
 - Language-independent approach
- Automatic approach
 - Summary length
- Desirable properties
 - Diversity: each sentence in the summary should bring additional information
 - Coverage: the sentences in the summary should contain all the relevant information from the original text

Proposed Solution

- Abstract Argumentation
 - A non-monotonic inferential strategy aimed at selecting reliable items in a set of conflicting claims
- Idea
 - Sentences ~ Arguments
 - Conflicts ~ Sentences that should not be both included in the same summary
 - Criterion: similarity
 - Attacks between pairs of similar sentences (to enforce *diversity*)
 - Supports between pairs of dissimilar sentences (to enforce coverage)

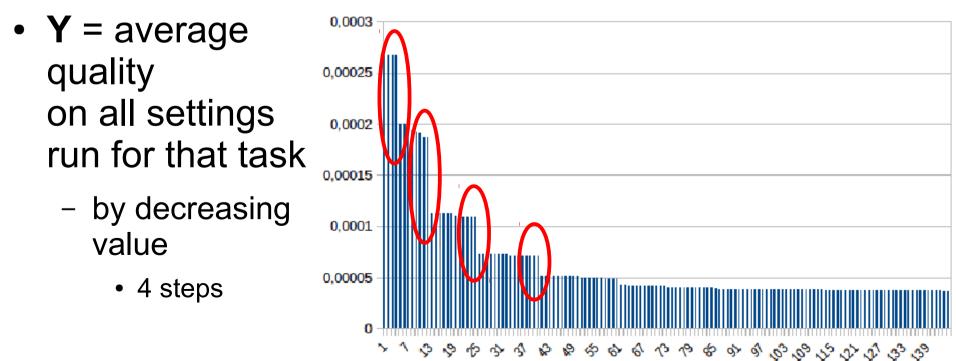
Abstract Argumentation Theory

- Argumentation Frameworks (AF) ~ Graphs
 - Arguments ~ Nodes, Attacks ~ Edges
 - Bipolar AFs: Consider both attacks and supports
 - Weighted AFs: Strength of attacks (or supports)
 - Semantics: compute subsets of arguments (Extensions) that are mutually compatible

- Several options, more skeptic or more credulous

• BAFs the simplest AF that allows to consider both attacks and supports between arguments

- NLP Pipeline
 - Sentence splitting
 - Tokenization
 - Lemmatization
 - Stopword removal
 - Word Sense Disambiguation
- Argumentation Framework Building & Evaluation


- Computation of similarity between pairs of sentences
 - Based on similarity of their building tokens (words)
 - Similarity between tokens computed as a linear combination of 3 similarity functions:
 - Syntactic
 - based on the Jaccard Index applied to syntactic dependencies
 - Semantic
 - based on taxonomic information using synsets in WordNet
 - Embedding
 - based on the cosine similarity between word embeddings
 - Normalized into [0,1]

- Argumentation Framework building
 - Heuristic inspired by the concept of *inconsistency budget* in WAFs
 - 2 thresholds α , β with $\beta < \alpha$
 - Attack threshold $\alpha \in [0, 1]$
 - [–] Edges with weight $\geq \alpha$ ~ Attacks
 - Support threshold $\beta \in [0, 1]$
 - ⁻ Edges with weight $\leq \beta$ ~ Supports
 - Intermediate similarity range between β and α does not generate attacks nor supports

- Semantics Evaluation
 - Conflict-free :
 - Rewards sentences that maximize diversity
 - d-/s-admissible :
 - May exceed the allowed length
 - Complete :
 - May include sets of arguments that are too small
 - d-/s-preferred :
 - Should improve quality and length wrt admissible and complete
 - Stable :
 - Should select the most dissimilar sentences
 - Might not achieve any solution at all

- Dataset
 - Single-document text summarization task of the English version of the MultiLing 2015 dataset
- Performance Measures
 - ROUGE-n
 - Percentage of overlapping word *n*-grams between generated summary and ground truth
 - Quality(s) = ROUGE-1(s) / length(s)
 - Compound indicator defined to penalize long summaries, since our approach automatically determines summary length

- Quality results for 144 argumentation settings
 - **X** = summarization settings (σ, α, β)
 - $\sigma \in \{\text{s-admissible}, \text{d-admissible}, \text{stable}, \text{complete}\}$
 - β \in [0.1,0.8], α \in [0.2,0.9], step 0.1, β < α

- Results on selected settings (steps)
 - Average size of full texts: 25542 characters
 - Average size of the ground truths: 1857

—	7%	of	the	full	texts
---	----	----	-----	------	-------

	ROUGE-1	ROUGE-2
WORST	37.17%	9.93%
BEST	50.38%	15.10%
ORACLE	61.91%	22.42%

Step	Semantics	α	β	length	(%)	Quality	Rouge-1		Rouge-2	
							Recall	Precision	Recall	Precision
1	s-admissible	0.1	0.3	1279	(5%)	2.00E-04	25.57%	41.97%		
	d-admissible									
2	s-admissible	0.1	0.4	4365	(17%)	1.13E-04	49.28%	30.32%	15.49%	7.22%
	d-admissible									
3	stable	0.1	0.5	8544	(33%)	7.07E-05	60.44%	24.44%	23.98%	7.43%
	$\operatorname{complete}$									
4	s-admissible	0.1	0.5	9826	(38%)	7.33E-05	72.09%	26.65%	27.26%	6.16%
	d-admissible									

- 4 steps in the graphic
 - Sudden drop in quality
 - Interesting for further investigation
 - Each corresponds to 2 different semantics that returned exactly the same results
 - No summary with length close to that of the ground truth
 - First step are shorter
 - Second step length jumps from 1352 to 4365 characters

- Proposed approach sensible and effective in returning relevant summaries, and competitive in performance, albeit paying in summary length
 - ROUGE-1
 - Step 1: recall not bad, precision quite high, even if the length of the summary is less than that of the ground truth
 - Step 2: comparable to the state-of-the-art, but using 17% (more than twice the ground truth)
 - Step 3: comparable to Oracle, but using the 33% (1/3) of the text
 - Step 4: much (> 10%) better than Oracle, but using 38% (less than 2/5) of the input texts
 - Able to catch nearly 3/4 of the content
 - ROUGE-2:
 - Same as above, plus
 - Recall slightly larger than the reference systems

- Disclaimer
 - Ground truth in this dataset obtained by humans using an *abstractive* approach
 - Extractive text summarization procedure possibly inappropriate
 - No exact match between the sentences in the input text and those in the summary
 - Summaries may contain words that are not contained in the input text
 - Summarization process extremely subjective
 - Many summaries may be appropriate for a given input text
 - Only one provided as ground truth

- Semantics
 - s-preferred and d-preferred provide relevant results
 - Confirms our hypothesis
 - stable and complete may also yield interesting results
 - Trade-off corresponding to the performance of ORACLE
- Qualitative evaluation: humans reported that
 - the proposed summaries have little redundancy,
 - yet provide a sensible account of the original document,
 - also ensuring smooth discourse flow,
 - even if obtained by filtering out sentences that, since present in the original text, presumably included relevant parts as regards the content and/or the flow of discourse

Conclusions

- Problem: Huge and ever-increasing number of documents in Digital Libraries
 - Impossible for humans to read them in order to assess their relevance and/or grasp their content
 - Solution: Automatic Text Summarization
 - Proposal: extractive approach based on Abstract
 Argumentation, and on similarity between sentences
- Results: viable and effective
 - Autonomously determines the number of sentences to be included in the summary
 - Summary typically larger than the dataset's ground truth, but still significantly shorter than the original text

Future Work

- Exploring other argumentation frameworks (e.g., those that may handle weights on attacks and supports) and semantics
- Further filtering of results returned by the argumentation-based selection
- Running experiments on other datasets and languages