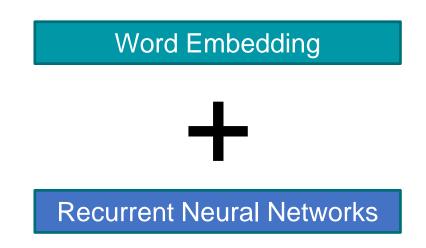
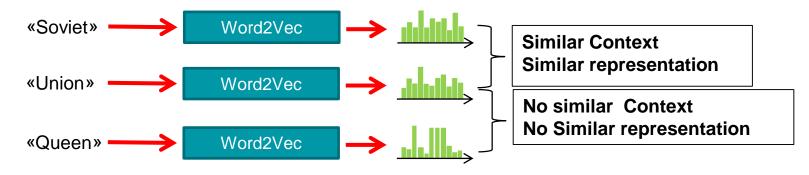


Bidirectional LSTM Recurrent Neural Network for Keyphrase Extraction

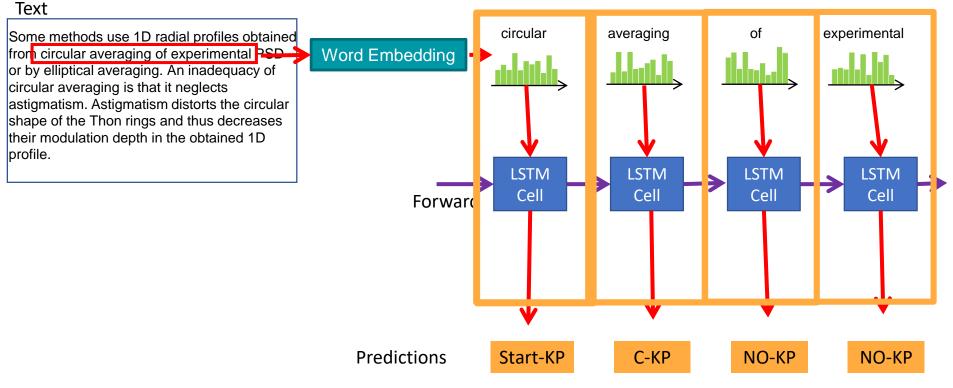

Marco Basaldella, Elisa Antolli, Giuseppe Serra, Carlo Tasso

Artificial Intelligence Laboratory @ University of Udine - http://ailab.uniud.it

Distiller improvements


• Two key elements:

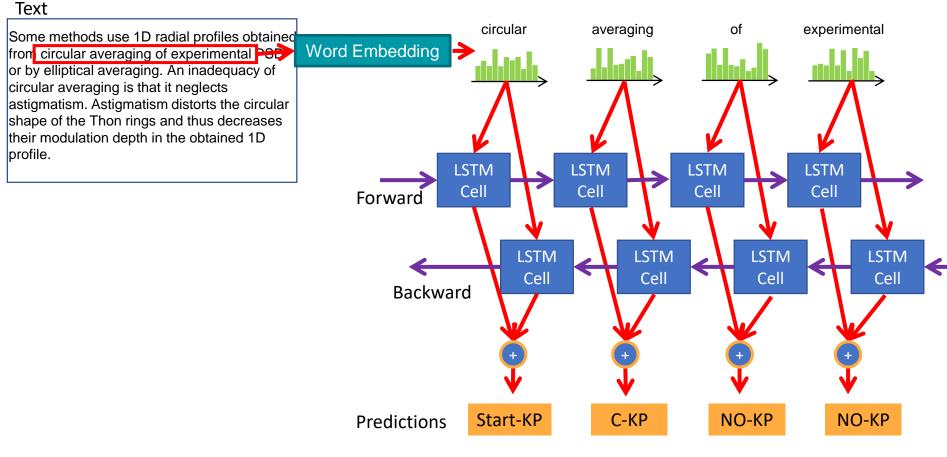
Word Embedding


- Word2Vec network is a technique for building a rich semantic word embedding space (Google in 2013)
- Key idea: two words have similar word embedding representations if they have a similar contexts
- For example:

• We adopted Stanford's Glove Embeddings (trained with 6 billion words extracted from Wikipedia and Web texts)

Recurrent Neural Networks (LSTM)

Bidirectional Recurrent Neural Networks (BLSTM)


Future context is important in text understanding

Toy example:

• «I speak very well <u>Japanese</u>, because I lived two years in Japan»

Our Full solution

Experimental Results

- Inspec Dataset:
 - It's one of the largest dataset for keyphrase extraction task
 - 2000 scientific abstract papers from Computers and Control e Information Technology
 - Experimental setting:
 - Training set: 1000 documents
 - Validation set: 500 documents
 - Test set: 500 documents
- Evaluation metrics:
 - Precision, Recall, F1-Score, Map, F1@5, F1@10

Word Embeddings evaluation

- **Test #1**: Training a Word Embedding Network on Inspec dataset does not perform well (Dataset too small)
- Test #2: We perform experiments using the pre-trained Stanford's GloVe Embeddings

Embedding	Size	Precision	Recall	F1-Score	Мар	F1@5	F1@10
GloVe-50	50	0.297	0.637	0.405	0.336	0.271	0.333
GloVe-100	100	0.346	0.653	0.453	0.373	0.301	0.378
GloVe-200	200	0.380	0.642	0.477	0.390	0.320	0.404
GloVe-300	300	0.359	0.639	0.460	0.376	0.311	0.382

Comparison Results

• Comparision with "traditional" approaches:

Method	Precision	Recall	F1-Score
Proposed Approach	0.380	0.642	0.477
N-grams [1]	0.252	0.517	0.339
Noun Phrase Chunking [1]	0.297	0.372	0.330
Pattern [1]	0.217	0.399	0.281
Topic Rank [2]	0.348	0.404	0.352

• Comparision with a recent approach based on Deep Learning

Method	F1@5	F1@10
Proposed Approach	0.320	0.404
Deep KP Extraction [3]	0.278	0.342

[1] Hulth: Improved automatic keyword extraction given more linguistic knowledge. In: Proc. of Conference on Empirical Methods in Natural Language Processing (2003)

[2] Bougouin *et al.*: Graph-based topic ranking for keyphrase extraction. In: Proc. of Conference on Natural Language Processing (2013)

[3] . Meng *et al.* : Deep Keyphrase Generation. In: Proc. of Annual Meeting of the Association for Computational Linguistics (2017)

Some Examples #1

A simple graphic approach for observer decomposition Based upon the proposition that the roles of inputs and outputs in a physical system and those in the corresponding output-injection observer do not really have to be consistent, a systematic procedure is developed in this work to properly divide a set of sparse system models and measurement models into a number of independent subsets with the help of a visual aid. Several smaller subobservers can then be constructed accordingly to replace the original one. The size of each sub-observer may be further reduced by strategically selecting one or more appended states. These techniques are shown to be quite effective in relieving on-line computation load of the output-injection observers and also in identifying detectable sub-systems.

Legenda

- Highlighted words: Results of the proposed approach
- <u>Underline bold</u>: Ground truth

Some Examples #2

BioOne: a new model for scholarly publishing This article describes a unique electronic journal publishing project involving the <u>University of Kansas</u>, the <u>Big 12 Plus Libraries Consortium</u>, the <u>American</u> <u>Institute of Biological Sciences</u>, <u>Allen Press</u>, and <u>SPARC</u>, the <u>Scholarly</u> <u>Publishing</u> and <u>Academic Resources Coalition</u>. This partnership has created BioOne, a database of 40 full-text society journals in the biological and <u>environmental sciences</u>, which was launched in April, 2001. The genesis and development of the project is described and financial, technical, and <u>intellectual property models</u> for the project are discussed. <u>Collaborative</u> <u>strategies</u> for the project are described

Note: probably the «scholarly publishing» was selected, because in the training set there are several time the keyphrase «scholarly publishing model>

Legenda

- Highlighted words: Results of the proposed approach
- **Underline bold**: Ground truth