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Coursera
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What course?

4

There are more than 2000 
courses to choose from



Choice and Well-Being

p We have more choice, more freedom, 
autonomy, and self determination

p Increased choice should improve well-being:

n added options can only make us better off: 
those who care will benefit, and those who do 
not care can always ignore the added options

p Various assessment of well-being have shown 
that increased affluence have accompanied by 
decreased well-being.

B. Schwartz, “The Paradox of Choice”, Harper 
Perennial, 2004.



Successful Queries are the Minority
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Source: http://www.keyworddiscovery.com/
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Queries will disappear

Leverage multiple signals to get rid of queries



Recommender Systems
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Coursera Recommendations
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Movie Recommendation – YouTube

10Recommendations account for about 60% of all video clicks from 
the home page.



1. Preference Elicitation

2. Preference 
prediction

3. Selecting and presenting 
the recommendations
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Classical Recommendation Model

Two types of entities: Users and Items

1. A background knowledge: 

l A set of ratings – preferences - is a map 

l r: Users x Items à [0,1] U {?}
l A set of �features� of the Users and/or Items

2. A method for predicting the preference function r on (user, 
item) pairs where it is unknown

3. A method for selecting the items to recommend (choice):

l Recommend to u the item i*=arg maxiÎItems
{r*(u,i)}

G. Adomavicius, A. Tuzhilin: Toward the Next Generation of Recommender
Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE 
Trans. Knowl. Data Eng. 17(6): 734-749 (2005)

r*(u, i) = Averageu’ is similar to u {r(u’, i)}
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RecSys 2017 Facts and Numbers

• 627 Attendees
• 43 Countries
• 247 Submissions
• 23 Sessions
• 46 Scientific papers
• 12 Industry papers
• 14 Sponsors

Eleventh ACM Conference on 
Recommender Systems, RecSys 2017, 
Como, Italy, August 27-31, 2017



Problems and Issues

p Cold Start (new user and new item) 
p Filter Bubble
p How much to personalize 
p How to contextualize 
p Learning to interact and

proactivity
p Recommendations for 

Groups
p Scalability and big data
p Privacy and security
p Diversity and serendipity
p Stream based recommendations 15



Critical Assumptions
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Predictability

p Predictability: by observing the user’s 
expressed preferences or behavior (choices) the 
recommender can build a concise algorithmic 
model of what the user prefers or chooses
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Stability of User Preferences

p User preferences are supposed to be rather 
stable – models are built by using historical data

18



Continuity

p User preference function is “continuous”: there 
exist a notion of item-to-item similarity such that 
similar items generate similar reactions in a user 

19
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Violation of predictability, stability and 
continuity assumptions

p Today I read drama while last month I was 
preferably reading adventure

p The user is rating high Fellini’s movies but is 
often watching Star Wars

p I like Pustertal but I do not like Vinshgau

21
Pustertal Vinshgau



Issues

p We have excessively simplified the user 
preference and choice models

n We need more sophisticated models

p We blindly rely on the observed data

n Some data should be ignored

p Preferences and models are dynamic and also the 
recommender influences the 
observed data.

22



Preferences
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Ratings (recommendations)
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Likes



Likes



Pairwise Preferences
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Pairwise-Based Recsys

p System that uses pairwise preferences for eliciting user 
preferences makes users more aware of their choice 
options 

p A system variant based on pairwise preferences 
outperformed a rating-based variant in terms of 
recommendation accuracy measured by nDCG and 
precision 

p Nearest-neighbor approaches are effective, but the user-
to-user similarity must be computed with specific metrics 
(e.g. Goodman Kruskal gamma correlation)

28

• L. Blédaité, F. Ricci: Pairwise Preferences Elicitation and Exploitation for 
Conversational Collaborative Filtering. Hyper Text 2015: 231-236

• S. Kalloori, F. Ricci, M. Tkalcic: Pairwise Preferences Based Matrix Factorization 
and Nearest Neighbor Recommendation Techniques. RecSys 2016: 143-146



CP-Network
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F. Koriche, B. Zanuttini / Artificial Intelligence 174 (2010) 685–703 687

Fig. 1. The domain and CP-net of “evening dress”.

term t is maximal for a subset of variables Y ⊆ Xn if var(t) = Y . For example, the term x1x2 is maximal for {x1, x2}, but not
for {x1, x2, x3}.

2.1. Syntax of CP-nets

A conditional preference rule (CP-rule) on a variable x is an expression of the form t : p ≻ p, where p is a literal of x
and t is a term such that x /∈ var(t). Such a rule captures the statement “given that t holds, the value p is preferred to the
value p for the variable x, all other things being equal”. Borrowing the usual terminology of production rule systems, the
preference p ≻ p and the term t are respectively called the head and the body of the CP-rule t : p ≻ p.

A conditional preference table (CP-table) on a variable x with respect to a set Y ⊆ Xn \ {x} is a set of CP-rules on x that
associates at most one rule t : p ≻ p to each maximal term t for Y . The CP-table is complete if exactly one rule t : p ≻ p is
associated to each maximal term t for Y . For example, the set {x1 : x2 ≻ x2} is an incomplete CP-table on x2 with respect to
{x1}, while the extended set {x1 : x2 ≻ x2, x1 : x2 ≻ x2} is a complete CP-table on x2 with respect to {x1}.

A conditional preference network (CP-net) over Xn is a labeled digraph N in which the set var(N) of nodes is a subset of
Xn , and such that each node x ∈ var(N) is annotated with a CP-table cpt(x) on x with respect to the set par(x) of parents of
x in the graph. The variables in var(N) are called relevant, and the variables in Xn \ var(N) are called irrelevant. The CP-net
is complete if every relevant variable is annotated with a complete CP-table.

A CP-net is acyclic if its digraph is acyclic, and tree-structured if its digraph forms a forest, that is, a disjoint union of
trees. Note that a tree-structured CP-net is an acyclic preference network where each node has at most one parent.

Recall that the size of a graph is defined by the number e of its edges. By extension, we define the size |N| of a CP-net
N to be r + e, where r is the total number of rules occurring in N , and e is the number of edges in the graph of N .

These different notions are illustrated in the following examples.

Example 1. Let us consider a variant of the evening dress domain [9]. Susan is a robopsychologist who spends most of her
time at the robot manufactory. Occasionally, she is invited to evening ceremonies, but she is always late at work and must
quickly change her outfits at home before getting to the ceremony. Fortunately, her domestic robot can help her to choose,
among the available clean clothes, a combination that she would like the most. The robot does not know a priori which are
Susan’s outfit preferences, but it is equipped with a learning module that can extract these preferences by observing her
behavior and asking simple questions.

The variables standing for the different clothes are described in the left part of Fig. 1. Only three of them are relevant to
Susan’s preferences: they are associated to the jacket, pants, and shirt. Susan unconditionally prefers black to white as the
color of both the jacket (x3 ≻ x3) and the pants (x4 ≻ x4 ), while her preference for a red shirt versus a white one depends
on the combination of jacket and pants. Namely, a red shirt (x5 ) brings a touch of color if the jacket and pants are the same
color, but a white shirt (x5 ) appears to be more sober if they are different.

The target CP-net N is depicted on the right part of Fig. 1. N is defined on 3 relevant variables, and it is acyclic and
complete. Since it contains 2 edges and 6 rules, its size is |N| = 8.

Example 2. Let us turn to a variant of the flight reservation domain [12] using our favorite character. As a research scientist,
Susan often assists to conferences in different countries, by taking a flight from the USA. In this context, Susan’s domestic
robot can select a travel that optimizes her preference over the flight options, given the available resources at the reservation
moment. Again, the robot does not know a priori which are Susan’s preferences, but it can learn them by observing previous
flight reservations and asking few questions.

The attributes standing for the different flight options are described in the left part of Fig. 2. The relevant variables are
the ticket class, departure day, departure time, and stop-over. Susan unconditionally prefers to take a flight leaving one

Frédéric Koriche, Bruno Zanuttini: Learning conditional preference 
networks. Artif. Intell. 174(11): 685-703 (2010)

Red shirt is preferred to white shirt 
if jacket and pants are black



Choice Modeling

30

The recommender is an agent that 
can take decision on behalf of the 
user (for the user)



Decision Making

p A decision maker DM selects a single alternative (or 
action) a∈A

p An outcome (or consequence) x∈X of the chosen action 
depends on the state of the word s∈S

p Consequence function:
": $	×'	 → )

p User preferences are expressed by a value or utility 
function – desirability of outcomes: 

*: ) → 	ℝ
p Goal: select the action a∈A that leads to the best outcome

31
D. Brazunas, Computational Approaches to Preference Elicitation, 
Tech Rep University of Toronto, 2006



Example – one user - certainty

p Actions = {read, run}
p States = Contexts = {sun, rain}
p Outcomes X = Contexts x Items = {(read, sun), 

(read, rain), (run, sun), (run, rain)}
p Preferences in context: 

n v(read, sun) = 3, v(read, rain) = 4, v(run, 
sun) = 5, v(run, rain) = 1

p Context is know
n If it is sun then recommend: run
n If it is rain then recommend: read

32



Recommender
p If the context is know
p And we know – or we can fully predict - the preferences

of the user u over the space of outcomes X (items in 
context) - either as pairwise comparisons or as an ordinal 
function (rating): 

!: #×%×& → (
p Then we can predict the user choice

i*=arg maxiÎItems {r(u, i, c)}
p Unfeasible!

n Context space is huge
n We do not fully know the relevant context
n It is hard to accurately predict the preferences in all the 

possible user contexts.

33G. Adomavicius, A. Tuzhilin: Context-Aware Recommender Systems. 
Recommender Systems Handbook 2015: 191-226



Context Aware RSs Algorithms

p Reduction-based Approach, 2005
p Exact and Generalized PreFiltering, 2009
p Item Splitting, 2009
p Tensor Factorization, 2010
p User Splitting, 2011
p Context-aware Matrix Factorization, 2011
p Factorization Machines, 2011
p Differential Context Relaxation, 2012
p Differential Context Weighting, 2013
p UI splitting, 2014
p Similarity-Based Context Modeling, 2015

34



Preference Knowledge

p The system knowledge of the user preferences is 
not only incomplete but it is also largely 
inaccurate

35



Remembering

p D. Kahneman (nobel prize): what we 
remember about an experience is 
determined by (peak-end rule)

p How the experience felt when it was at its 
peak (best or worst)

p How it felt when it ended

p So how well do we rate or compare?

p It is doubtful that we prefer an experience to 
another very similar just because the first 
ended better.

36



Summing Up – so far

p Preferences are context dependent 
p But it is practically impossible to know/predict 

preferences in all the potentially relevant 
contexts

p Preferences judgements acquired after the 
experience of the item may be unreliable

37



Irrelevant Context
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p It is hard to say what is really irrelevant



Attraction Effect

p Alternative options:
n You could get access to all our web content for 

$59, 
n A subscription to the print edition for $125, 
n Or a combined print and web subscription, 

also for $125.
p D. Ariely surveyed students about which option 

they preferred
n Predictably, nobody chose print subscription 

alone; 
n 84% opted for the combination deal, 
n and 16% for the web subscription.

39Ariely, Dan. Predictably Irrational: The Hidden Forces That Shape Our 
Decisions. New York: Harper Perennial, 2010.



Without Attraction

p Alternative options:
n You could get access to all our web content 

for $59, 
n Or a combined print and web subscription, 

also for $125.

p D. Ariely surveyed again students about which 
option they preferred
n 32% wanted the print and web subscription 

(vs 84% in the previous experiment) 
n while 68% preferred to go web-only (vs 16% 

in the previous experiment).
40



Irrelevant context does matter

p Modeling the alternative options as context
!: #×%×& → (

p With the dominated option
n r(u, web, (print, print+web)) = 4
n r(u, print+web, (web, print)) = 5
n r(u, print, (web, print+web)) = 0

p Without the dominated option
n r(u, web, (print+web)) = 4
n r(u, print+web, (web)) = 3

41

Context space explodes: we must consider 
even apparently irrelevant context wen 
estimating preferences.



Random Choice

p A model of choice gives the probability of choosing
an item i from a set of choices X: p(i|X)

p If i is represented by a feature vector vi the 
multinomial logit model (MLM) state that:

! "	 $) = 	 exp	(+,-.)
∑ exp	(+,-0)0∈2

p w is a vector of weights and wTvi is the attractiveness 
of i (modelled by vi)

p wTvi = r(u,i) – assuming w is the vector modeling u
p This is a step ahead from the assumption that u will 

choose the item i that maximizes r(u,i).

42T. Osogami, Human choice and good choice, in The role and 
importance of mathematics in innovation, Springer, 2017.



Restricted Boltzmann Machine

p MLM choice model cannot explain ”attraction” 
since the ratio of p(i|X) and p(j|X) does not 
change if we remove an item k from the choice 
set X

p In a restricted Boltzmann machine the 
attractiveness of an item depends on the 
attractiveness of the other items  

43
T. Osogami, M. Otsuka: Restricted Boltzmann machines modeling 
human choice. NIPS 2014: 73-81
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Figure 2: RBM choice model

where ✓ ⌘ {W, bvis, bhid} denotes the parameters of the RBM. The probability of realizing a partic-
ular configuration of (z, h) is given by

P✓(z, h) ⌘
exp(�E✓(z, h))P

z0
P

h0 exp(�E✓(z0, h0))
. (6)

The summation with respect to a binary vector (i.e.,
P

z0 or
P

h0 ) denotes the summation over all of
the possible binary vectors of a given length. The length of z0 is |V|, and the length of h0 is |H|.

The RBM choice model can be represented as an RBM having the structure in Figure 2. Here, the
layer of visible units is split into two parts: one for the choice set and the other for the selected item.
The corresponding binary vector is denoted by z = (v, w). Here, v is a binary vector associated
with the part for the choice set. Specifically, v has length |I|, and vX = 1 denotes that X is in the
choice set. Analogously, w has length |I|, and wA = 1 denotes that A is selected. We use T k

X to
denote the weight between a hidden unit, k, and a visible unit, X , for the choice set. We use Uk

A to
denote the weight between a hidden unit, k, and a visible unit, A, for the selected item. The bias is
zero for all of the hidden units and for all of the visible units for the choice set. The bias for a visible
unit, A, for the selected item is denoted by bA. Finally, let H = K.

The choice rate (3) of the RBM choice model can then be represented by

�(A|X ) =
X

h

exp
�
�E✓

��
vX , wA

�
, h
��

, (7)

where we define the binary vectors, vX , wA, such that vXi = 1 iff i 2 X and wA
j = 1 iff j = A.

Observe that the right-hand side of (7) is
X

h

exp(�E✓((v
X , wA), h)) =

X

h

exp
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= exp(bA)
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�
, (10)

which is equivalent to (3).

The RBM choice model assumes that one item from a choice set is selected. In the context of the
RBM, this means that wA = 1 for only one A 2 X ✓ I. Using (6), our choice probability (1) can
be represented by

p(A|X ) =

P
h P✓((vX , wA), h)P

X2X

P
h P✓((vX , wX), h)

. (11)

This is the conditional probability of realizing the configuration, (vX , wA), given that the realized
configuration is either of the (vX , wX) for X 2 X . See Appendix A.2for an extension of the RBM
choice model.

3 Flexibility of the RBM choice model

In this section, we formally study the flexibility of the RBM choice model. Recall that �(X|X ) in
(3) is modified from �MLM(X|X ) in (2) by a factor,

1 + exp
�
T k
X
+ Uk

X

�
, (12)
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System Dynamics
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Simulating Rating Acquisition

45

[M. Elahi, F. Ricci, N. Rubens: Active learning strategies for rating elicitation 
in collaborative filtering: A system-wide perspective. ACM TIST 5(1): 13:1-
13:33 (2013)]



Active Learning Strategies
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Active Learning and Natural Acquisition
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Do we really need 100% 
precise preference and choice 
prediction models?



Choices and Recommendations

p Recommendations 
should not only tell 
the user what is the 
target (choice)

p The target may be 
given – e.g. by the 
user

p How to smartly 
achieve the target 
may be more useful.

49



Behavioural Model Learning

p Learning the choice model of the user
p Determining the rationale for the decisions
p Generating “non trivial” recommendations that intelligently 

deviates from the learned behavioral model
n The user is predicted to take a coffee at 8:00 at Walter 

Bar; let us suggest to get it at Rosy Bar – it is cheaper 
and better

n The user is getting back home; let us suggest to visit a 
Photo Exhibition along the path – he likes photography 
and will still be able to get home on time.

p Transparent behavioral model is learnt using Inverse 
Reinforcement Learning.

50

D. Massimo, M. Elahi, F. Ricci: Learning User Preferences by Observing User-
Items Interactions in an IoT Augmented Space. UMAP 2017.



Lesson Learned

p Preferences are contextual, dynamic and hard 
to predict

p Predicting preferences does not suffice for 
supporting decision making with 
recommendations - choice model

p Preference are dynamic and it is important to 
control preference elicitation and understand the 
effect of the recommender on the elicited 
preferences

p Recommendations could be more “intelligently” 
generated on top of the learned 
preferences and choice models.
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